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To understand the structure of a large-scale biological, social, or
technological network, it can be helpful to decompose the network
into smaller subunits or modules. In this article, we develop an
information-theoretic foundation for the concept of modularity in
networks. We identify the modules of which the network is
composed by finding an optimal compression of its topology,
capitalizing on regularities in its structure. We explain the advan-
tages of this approach and illustrate them by partitioning a number
of real-world and model networks.

clustering � compression � information theory

Many objects in nature, from proteins to humans, interact in
groups that compose social (1), technological (2), or

biological systems (3). The groups form a distinct intermediate
level between the microscopic and macroscopic descriptions of
the system, and group structure may often be coupled to aspects
of system function including robustness (3) and stability (4).
When we map the interactions among components of a complex
system to a network with nodes connected by links, these groups
of interacting objects form highly connected modules that are
only weakly connected to one other. We can therefore compre-
hend the structure of a dauntingly complex network by identi-
fying the modules or communities of which it is composed
(5–10). When we describe a network as a set of interconnected
modules, we are highlighting certain regularities of the network’s
structure while filtering out the relatively unimportant details.
Thus, a modular description of a network can be viewed as a lossy
compression of that network’s topology, and the problem of
community identification as a problem of finding an efficient
compression of the structure.

This view suggests that we can approach the challenge of
identifying the community structure of a complex network as a
fundamental problem in information theory (11–13). We pro-
vide the groundwork for an information-theoretic approach to
community detection and explore the advantages of this ap-
proach relative to other methods for community detection.

Fig. 1 illustrates our basic framework for identifying commu-
nities. We envision the process of describing a complex network
by a simplified summary of its module structure as a commu-
nication process. The link structure of a complex network is a
random variable X; a signaler knows the full form of the network
X and aims to convey much of this information in a reduced
fashion to a signal receiver. To do so, the signaler encodes
information about X as some simplified description Y. She sends
the encoded message through a noiseless communication chan-
nel. The signal receiver observes the message Y and then
‘‘decodes’’ this message, using it to make guesses Z about the
structure of the original network X.

There are many different ways to describe a network X by a
simpler description Y. Which of these is best? The answer to this
question of course depends on what you want to do with the
description. Nonetheless, information theory offers an appealing
general answer to this question. Given some set of candidate
descriptions Yi, the best description Y of a random variable X is
the one that tells the most about X; that is, the one that

maximizes the mutual information I(X;Y) between description
and network.

Since we are interested in identifying community structure, we
will explore descriptions Y that summarize the structure of a
network X by enumerating the communities or modules within
X and describing the relations among them. In this article, we will
consider one particular method of encoding the community
structure of X. More generally one could and indeed should
consider alternative ‘‘encoders,’’ so as to choose one best suited
for the problem at hand.

We consider an unweighted and undirected network X of size
n with l links, which can be described by the adjacency matrix

Aij��1 if there is a link between nodes i and j
0 otherwise . [1]

We choose the description

Y � �a � �
a1······
an

� , M � � l11 . . . l1m···
· · ·

···
lm1 . . . lmm

� � [2]

for m modules, where a is the module assignment vector, ai � {1,
2, . . . , m}, and M is the module matrix. The module matrix M �
M(X,a) describes how the m modules given by the assignment
vector are connected in the actual network. Module i has ni nodes
and connects to module j with lij links (see Fig. 1).

To find the best assignment a*, we now maximize the mutual
information over all possible assignments of the nodes into m
modules

a* � arg max
a

I�X ;Y� . [3]

By definition, the mutual information I(X;Y) � H(X) �
H(X�Y) � H(X) � H(Z), where H(X) is the information neces-
sary to describe X, and the conditional information H(X�Y) �
H(Z) is the information necessary to describe X given Y (see Fig.
1). We therefore seek to minimize H(Z). This is equivalent to
constructing an assignment vector such that the set of network
estimates Z in Fig. 1 is as small as possible. Given that the
description Y assigns nodes to m modules,

H�Z� � log	 

i�1

m � ni�ni � 1��2
l ii

� 

i�j

� ninj

l ij
� � , [4]
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where the parentheses denote the binomial coefficients and the
logarithm is taken in base 2. Each of the m binomial coefficients
in the first product gives the number of different modules that
can be constructed with ni nodes and lii links. Each of the
m(m � 1)/2 binomial coefficients in the second product gives the
number of different ways module i and j can be connected to one
another.

In Fig. 2, we apply our cluster-based compression method to
the dolphin social network reported by Lusseau et al. (14). Our
method selects a division that differs by only one node from the
division along which the actual dolphin groups were observed to
split. Because it is computationally infeasible to check all
possible partitions of even modestly sized networks, we use
simulated annealing with the heat-bath algorithm to search for
the partition that maximizes the mutual information between the
description and the original network. We have confirmed the

results for the networks in the figures with exhaustive searches
in the vicinity of the Monte Carlo solutions.

We compare our results with the partition obtained by using
the modularity approach introduced by Newman and Girvan in
ref. 15; that technique has been widely adopted because of its
appealing simplicity, its performance in benchmark tests (10),
and the availability of powerful numerical techniques for dealing
with large networks (16–18). Given a partitioning into m mod-
ules, the modularity Q is the sum of the contributions from each
module i

Q � 
i�1

m

lii�l � �di�2l�2, [5]

where lii is the number of links between nodes in the ith module,
di is the total degree in module i, and l is the total number of links

Fig. 1. Basic framework for detecting communities as a communication process. A signaler knows the full network structure and wants to send as much
information as possible about the network to a receiver over a channel with limited capacity. The signaler therefore encodes the network into modules in a way
that maximizes the amount of information about the original network. This figure illustrates an encoder that compresses the network into three modules, i �
circle, square, star, with ni nodes and lii links connected by lij links between the modules. The receiver can then decode the message and construct a set of possible
candidates for the original network. The smaller the set of candidates, the more information the signaler has managed to transfer.

Fig. 2. The dolphin network of Lusseau et al. (14) partitioned with our cluster-based compression (solid line) and based on the modularity (dashed line). The
right branch of the dashed line represents a split based on maximizing the modularity, which is different from the left branch solution based on the spectral
analysis approximation presented in ref. 31. The edge-betweenness algorithm presented in ref. 5 splits the network in the same way as our cluster-based
compression method (15).
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in the network. When we maximize the modularity, we are not
just minimizing the number of links between modules. Instead,
we find a configuration that maximizes the number of links
within modules in the actual network, minus the expected
number of links within comparable modules in a random net-
work with the same degree sequence (17); or, equivalently, we
aim to divide the network such that the number of links within
modules is higher than expected.

This approach works beautifully for networks where the
modules are similar in size and degree sequence (10). However,
when the dolphin network in Fig. 2 is partitioned by using the
modularity approach, the network ends up being divided very
differently from the empirically observed fission of the dolphin
group. Why? Because of the (2l)2 denominator in the second
term of the definition of modularity (Eq. 5), the choice of
partition is highly sensitive to the total number of links in the
system. By construction, the benefit function that defines mod-
ularity favors groups with similar total degree, which means that
the size of a module depends on the size of the whole network (19).

To compare quantitatively the performance of our cluster-
based compression method with modularity-based approaches,
we conducted the benchmark tests described in refs. 5 and 10. In
these tests, 128 nodes are divided into four equally sized groups
with average degree 16. As the average number of links kout �
6, 7, 8 from each node to nodes in other groups increases, it
becomes harder and harder to identify the underlying group
structure.

Table 1 presents the results from both methods using the
simulated-annealing scheme described above for the numerical
search; we obtained comparable results for networks with up to
104 nodes. When the groups are of equal size and similar total
degree, both methods perform very well, on par with the best
results reported in refs. 7 and 20.

When the groups vary in size or in total degree, as was the case
in the dolphin network, the modularity approach has more
difficulty resolving the community structure (Table 1). We
merged three of the four groups in the benchmark test to form
a series of test networks each with one large group of 96 nodes
and one small group with 32 nodes. These asymmetrically sized
networks are harder for either approach to resolve, but cluster-
based compression recovers the underlying community structure
more often than does modularity, by a sizable margin. Finally, we
conducted a set of benchmark tests using networks composed of
two groups each with 64 nodes but with different average
degrees of 8 and 24 links per node. For these networks, we use
kout � 2, 3, 4, and cluster-based compression again recovers
community structure more often than does modularity.

Next, we address a model selection challenge. In some special
cases, we will know a priori how many modules compose our
sample network; but in general, the task of resolving community
structure is twofold. We must determine the number of modules
in the network, and then we need to partition the nodes into that
number of modules. The catch is that we cannot determine the
optimal number of modules without also considering the assign-
ments of nodes: so these problems need to be solved simulta-
neously. Below, we provide a solution grounded in algorithmic
information theory.

Looking back at Fig. 1, the encoder seeks to find a compres-
sion of the network so that the decoder can make the best
possible estimate of the actual network. One approach would be
to have the encoder partition the network into n modules, one
for each node. This ensures that the decoder can reconstruct the
network completely, but under this approach nothing is gained
either in compression or module identification. Therefore, the
encoder must balance the amount of information necessary to
describe the network in modular form, as given by the signal Y
in Fig. 1, and the uncertainty that remains once the decoder
receives the modular description, as given by the size of the set
of network estimates Z in Fig. 1. This is an optimal coding
problem and can be resolved by the minimum description length
(MDL) principle (12, 21, 22). The idea is to exploit the regu-
larities in the structure of the actual network X to summarize it
in condensed form, without overfitting it. What do we mean by
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Fig. 3. Partitioning into an optimal number of modules. (A) Network
consisting of 40 journals as nodes from four different fields: multidisciplinary
physics (squares), chemistry (circles), biology (stars), and ecology (triangles).
The 189 links connect nodes if at least one article from one of the journals cites
an article in the other journal during 2004 (32). We have selected the 10
journals with the highest impact factor in the four different fields but disre-
garded journals classified in one or more of the other fields. (B) Minimum
description length for the network in A partitioned into 1–5 different mod-
ules. The optimal partitioning into four modules is illustrated by the lines in A.

Table 1. Benchmark performance for symmetric and asymmetric
group detection measured as fraction of correct assignments,
averaged over 100 network realizations with the standard
deviation in parentheses

Group kout Compression* Modularity

Symmetric 6 0.99 (0.01) 0.99 (0.01)
7 0.97 (0.02) 0.97 (0.02)
8 0.87 (0.08) 0.89 (0.05)

Node asymmetric 6 0.99 (0.01) 0.85 (0.04)
7 0.96 (0.04) 0.80 (0.03)
8 0.82 (0.10) 0.74 (0.05)

Link asymmetric 2 1.00 (0.00) 1.00 (0.01)
3 1.00 (0.00) 0.96 (0.03)
4 1.00 (0.01) 0.74 (0.10)

Here, we assume that the true number of modules (four in the symmetric
case, and two in the asymmetric cases) is known a priori.
*The standard deviation is nonzero but �0.01 for kout � 2, 3.
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overfitting in this context? Fig. 3 illustrates. We want to choose
a set of modules for the journal citation network in Fig. 3 such
that if we were to repeat the experiment next year, each journal
would likely be assigned to the same module again. If we overfit
the data, we may capture more of a specific year’s data, but
unwittingly we also capture noise that will not recur in next year’s
data.

To minimize the description length of the original network X,
we look for the number of modules m that minimizes the length
of the modular description Y plus the ‘‘conditional description
length,’’ where the conditional description length is the amount
of additional information that would be needed to specify X
exactly to a receiver who had already decoded the description Y
(12). That is, we seek to minimize the sum

L�Y� � L�X�Y�, [6]

where L(Y) is the length in bits of the signal, and L(X�Y) is the
number of bits needed to specify which of the network estimates
implied by the signal Y is actually realized. The description length
is easy to calculate in this discrete case and is given by

L�Y� � L�X�Y� � n log m �
1
2

m�m � 1� log l � H�Z� , [7]

where the first and second term give the size necessary to encode
the assignment vector a and the module matrix M(X,a), and H(Z)
is given in Eq. 4. Fig. 3B shows the description length with the
journal network partitioned into one to five modules. Four
modules yield the minimum description length, and we show the
corresponding partition in Fig. 3A.

This cluster-based compression assigns 39 of the 40 journals
into the proper categories but places the central hub Physical
Review Letters (PRL) in the chemistry cluster. This may seem like
a mistake, given that PRL has nine links to physics and only eight
to chemistry. Indeed, a partitioning based on the modularity
score Q places PRL among the physics journals; but whatever its
subject matter, the structural role that PRL plays in the un-
weighted journal network is that of a chemistry journal. Like
most of the chemistry journals, and unlike its compatriots in
physics, PRL is closely linked to biology and somewhat con-
nected to ecology.

We can also partition the network into two, three, or five
modules, but doing so yields a longer total description length.
When we compress the network into two components, physics
clusters together with chemistry, and biology clusters together
with ecology. When we split into three components, ecology and
biology separate, but physics and chemistry remain together in
a single module. When we try to split the network into five

modules, we get essentially the same partition as with four, only
with the singly connected journal Conservation Biology split off
by itself into its own partition. One might not even consider that
singleton to be a valid module.

To get a sense of how different methods handle the model
selection problem, we compared the performance of our cluster-
based compression method with the modularity-based approach.
Instead of looking for the best assignment given the correct
number of modules as in Table 1, we look at the performance of
each method at estimating the correct number of modules. Our
results are summarized in Table 2. Both cluster-based compres-
sion and modularity exhibit thresholds beyond which they are
unable with high probability to reconstruct the underlying
module structure that generated the data. Beyond this threshold,
the compression method tends to underestimate the number of
groups. By contrast, the modularity tends to overestimate the
number of groups. Others have observed similar model selection
bias by the modularity approach; in a completely random
network, the modularity-based approach typically detects mul-
tiple and therefore statistically insignificant modules (23–25).

When the clusters are symmetric in size and degree, both
methods reach the resolution threshold at approximately the
same point. However, when the groups have unequal numbers of
nodes or unequal degree distributions, the cluster-based com-
pression method is able to successfully reconstruct the underly-
ing structure of networks that the modularity approach cannot
recover (Table 2).

Let us look back at the journal network in Fig. 3 and recall that
we cannot partition this network into more than four modules
without creating at least one module that has a majority of its
links to nodes in other modules. Because of this concept of what

A

B

Fig. 4. Zachary’s karate club network (29) partitioned into two modules
based on the maximum mutual information with (A) and without (B) the link
constraint. The partitioning with more links within modules than between
modules in A clusters closely connected nodes together, and the uncon-
strained partitioning in B clusters nodes with similar roles together. The stars
and circles represent the two observed groups in A, and the stars represent the
five nodes with highest degree in B.

Table 2. Benchmark performance for model selection measured
as fraction of correct identification of number of groups,
averaged over 100 network realizations with the average
number of assigned modules in parentheses

Group kout Compression Modularity

Symmetric* 6 1.00 (4.00) 1.00 (4.00)
7 1.00 (4.00) 1.00 (4.00)
8 0.14 (1.93) 0.70 (4.33)

Node asymmetric† 6 1.00 (2.00) 0.00 (4.95)
7 0.80 (1.80) 0.00 (4.97)
8 0.06 (1.06) 0.00 (5.29)

Link asymmetric† 2 1.00 (2.00) 0.00 (3.10)
3 1.00 (2.00) 0.00 (4.48)
4 1.00 (2.00) 0.00 (5.55)

*The symmetric networks have four modules.
†The asymmetric networks have two modules.
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a module is (26, 27), we might be interested only in those clusters
with more links within than between clusters (lii � lij for all i and
j in Eq. 2). However, choosing modules in that way will not
necessarily maximize mutual information. In many cases, we get
a higher mutual information by selecting modules such that hubs
are clustered together and peripheral nodes are clustered to-
gether. When this is true, we can describe the network structure
more efficiently by clustering nodes with similar roles instead of
clustering nodes that are closely connected to one another. The
mixture model approach provides an alternative method of
identifying aspects of network structure beyond positive assort-
ment (28). In our examples where we want to find modules with
more links within modules than between them, we impose a ‘‘link
constraint,’’ penalizing solutions with more links between than
within in the simulated annealing scheme.

To visualize the different ways of partitioning a network, we
split Zachary’s classic karate club network (29) with (Fig. 4A)
and without (Fig. 4B) the link constraint. In Fig. 4A, the
partitioning corresponds exactly to the empirical outcome that
was observed by Zachary. However, in Fig. 4B, the five members
with the highest degrees are clustered together. In the first case,
the compression capitalizes on the high frequency of ties be-
tween members of the same subgroup and the relatively few
connections between the groups. In the second case, the com-
pression takes advantage of the very high number of links
between the five largest hubs and the peripheral members, and
the very few connections between the peripheral members. The
compression with the hubs in one cluster and the peripheral
nodes in the other cluster is in this case more efficient.

We have shown that the process of resolving community
structure in complex networks can be viewed as a problem in
data compression. By drawing out the relationship between
module detection and optimal coding, we are able to ground the
concept of network modularity in the rigorous formalism pro-
vided by information theory.

Enumerating the modules in a network is an act of description;
there is an inevitable tradeoff between capturing most of the
network structure at the expense of needing a long description
with many modules and omitting some aspects of network
structure so as to allow a shorter description with fewer modules.
Our information-theoretic approach suggests that there is a

natural scale on which to describe the network, thereby balancing
this tradeoff between under- and over-description.

The main purpose of this article is to propose a new theoretical
approach to community detection, and thus we have not exten-
sively explored methods of optimizing the computational search
procedure. Nonetheless, we have partitioned networks of sizes
up to 104 nodes with a simple simulated annealing approach.
While many interesting real-world networks are smaller than
this, it is our hope that the approach can be used for even larger
networks with other optimization methods such as the greedy
search technique presented in ref. 30.

For many networks, our cluster-based compression method
yields somewhat different results than does the modularity
approach developed by Newman and colleagues. The differences
reflect alternative perspectives on what community structure
might be. If one views community structure as statistical devi-
ation from the null model in which the degree sequence is held
constant but links are otherwise equiprobable among all nodes,
then the modularity optimization method by definition provides
the optimal partitioning. If one views community structure as the
regularities in a network’s topology that allow the greatest
compression of the network’s structure, then our approach
provides a useful partitioning. The choice of which to pursue will
depend on the questions that a researcher wishes to ask.

In this article, we have concentrated on finding communities
of nodes that are positively clustered by the links among them.
While this is a common goal in community detection, the sort of
information that we wish to extract about network topology may
vary from application to application. By choosing an appropriate
encoder, one can identify other aspects of structure, such as the
hub versus periphery distinction illustrated in our alternative
partitioning of the karate club network. When we abstract the
problem of finding pattern in networks to a problem of data
compression, the information-theoretic view described here
provides a general basis for how to get the most information out
of a network structure.

We thank Ben Althouse for generating the network used in Fig. 3 and
Mark Newman for constructive comments on the manuscript. This work
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